
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

A GUI Based Approach to Detect

Energy Bugs in Android

Applications

by

Ayesha Naseer

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2020

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2020 by Ayesha Naseer

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate my thesis to my husband, parents, supervisor and friends who

encouraged and supported me. A special feeling of gratitude for my parents and

husband for their endless love and support.

CERTIFICATE OF APPROVAL

A GUI Based Approach to Detect Energy Bugs in

Android Applications

by

Ayesha Naseer

(MCS181012)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Waseem Shahzad FAST-NU, Islamabad

(b) Internal Examiner Dr. Nadeem Anjum CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem

Thesis Supervisor

November, 2020

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

November, 2020 November, 2020

iv

Author’s Declaration

I, Ayesha Naseer hereby state that my MS thesis titled “A GUI Based Ap-

proach to Detect Energy Bugs in Android Applications” is my own work

and has not been submitted previously by me for taking any degree from Capital

University of Science and Technology, Islamabad or anywhere else in the coun-

try/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Ayesha Naseer)

Registration No:MCS181012

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “A GUI

Based Approach to Detect Energy Bugs in Android Applications” is

solely my research work with no significant contribution from any other person.

Small contribution/help wherever taken has been duly acknowledged and that

complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Ayesha Naseer)

Registration No:MCS181012

vi

Acknowledgements

I am obliged to Allah Almighty the Merciful, the Beneficent and the source of all

Knowledge, for granting me the courage and knowledge to complete this thesis.

He bestowed me with the patience, wellness and understanding to complete my

thesis.

I am also thankful to my husband and parents for their love support and sacrifices

which they have made for me. Especially my husband who played an important

role in guiding me and keeping me motivated during the thesis.

A special thanks to Dr. Aamer Nadeem for his guidance, motivation and

regular feedback during my thesis. I am sincerely grateful to him for his continuous

support during my research. He is the most respectable man and working under

his supervision was an honor for me.

I also want to thanks Mr. Qamar Zaman and Asia Shahab for their support and

motivation. I am truly grateful how they keep me motivated during my research.

I would also like to thank the CSD research group for their guidance. Finally, I

would like to thank everyone who helped and supported me.

(Ayesha Naseer)

Registration No:MCS181012

vii

Abstract

Smartphones have improved in terms of their processing speed and memory ca-

pacity. The increased usage of smartphones has led to the widespread usage of

smartphone applications. If the applications are not carefully developed, they be-

come energy-inefficient due to some energy-intensive resources used in them (such

as Wi-Fi, GPS, etc.). When these resources are left unreleased after use they start

consuming the smartphone’s battery power even if no application is using these

resources. This behavior is called resource-leaking and causes energy-bugs.

Different techniques exist in the literature that can detect the presence of energy-

bugs due to resource-leaking. They can be classified into static, dynamic, and

hybrid techniques. Static techniques do not execute the code therefore they may

include infeasible paths and generate false-positives. Dynamic techniques can de-

tect the bugs at run-time by executing the code which static analysis techniques

cannot detect. However, they become costly because multiple paths have to be ex-

ecuted. Hybrid techniques provide the benefit of both static and dynamic analysis

techniques.

The existing techniques detect the energy-bugs at the method level. A method

containing the code of an event-handler corresponding to an event. They consider

each method in isolation and check if the particular method has acquired a resource

in it but did not release that resource within that method rather it is released in

another method than they call it an energy-bug at the method level. However, if

we consider both the methods at the application level, where both the methods

execute in a single path then the resource gets released and there is no energy-bug

which shows that the existing techniques generate false-positives.

In this thesis, we enhance an existing technique by performing energy-bug de-

tection at the application level and propose an approach that does not produce

false-positives. In the test-paths of the Event Flow Graph generated at the appli-

cation level, when we execute two such methods in which a resource is acquired in

one of them and released in the other, then, in this case, it is not an energy-bug

viii

because a resource is being released after the acquisition and there is no false-

positive at the application level. We have evaluated our approach with 11 real-life

Android applications from different online sources and detected energy-bugs in

them. We have compared the proposed approach with the existing approach and

found false-positives in their approach.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Classification of Energy-Bugs . 2

1.2 Resource Acquisition in Android Applications 2

1.3 Energy-Bug Detection Techniques 3

1.3.1 Static Analysis Techniques 4

1.3.2 Dynamic Analysis Techniques 4

1.3.3 Hybrid Analysis Techniques 5

1.4 Problem Statement . 5

1.5 Research Questions . 6

1.6 Research Methodology . 6

1.7 Research Contribution . 8

1.8 Thesis Structure . 8

2 Literature Review 9

2.1 Static Approach . 9

2.2 Dynamic Approach . 9

2.3 Hybrid Approach . 10

2.4 Literature Studies . 10

2.5 Analysis and Comparison . 14

3 Proposed Approach 18

ix

x

3.1 Proposed Solution . 19

3.1.1 Event Flow Graph Generation 21

3.1.2 Test-Path Generation for the Event Flow Graph 22

3.1.3 Complete Test-Path Generation 24

3.1.4 Execution Results/ Detected Bugs 28

4 Results and Discussion 31

4.1 Subject Programs . 32

4.2 Features of the Subject Programs 34

4.3 Event Flow Graph Generation . 36

4.4 Test-Paths of the Event Flow Graph 37

4.5 Complete Test-Paths . 40

4.5.1 Complete Test-Paths of the Aripuca Application 44

4.5.1.1 Test-Paths for Event Flow Graph of Aripuca Ap-
plication . 45

4.5.2 Complete Test-Paths of the Tachometer Application 46

4.5.2.1 Test-Paths for Event Flow Graph of Tachometer
Application . 46

4.6 Test-Paths Evaluation . 47

4.7 Results . 50

4.8 Comparison . 51

5 Conclusion and Future work 54

5.1 Future Work . 55

Bibliography 56

Appendix: The XML Code of the Subject Programs 62

List of Figures

1.1 An Example Code of Method Acquiring a Resource 3

1.2 An Example Code of Method Releasing a Resource 4

3.1 Flowchart of Proposed Solution . 20

3.2 Event Flow Graph of the Example Application 22

3.3 Sample XML Code of the Event Flow Graph shown in Figure 3.2 . 22

3.4 Edges of the Event Flow Graph for Aripuca Application 23

3.5 Test-Paths of the Event Flow Graph shown in Figure 3.2 23

3.6 Control Flow Graphs associated with Events of the EFG in Figure . 25

3.7 Test-Paths for the Control Flow Graph of the Event E2 26

3.8 Test-Paths for the Control Flow Graph of the Event E5 26

3.9 Test-Paths for the Control Flow Graph of the Event E6 26

4.1 Lines of Code for each Subject Program 35

4.2 Number of event-handler Classes for each Subject Program 36

4.3 The Event Flow Graph of Aripuca Application 37

4.4 The Event Flow Graph of Tachometer Application 37

4.5 Edges of the Event Flow Graph for Aripuca Application 38

4.6 Test-Paths of the Event Flow Graph of Aripuca Application 38

4.7 Edges of the Event Flow Graph for Tachometer Application 39

4.8 Test-Paths of the Event Flow Graph of Tachometer Application . . 39

4.9 Control Flow Graphs Associated with Corresponding Events of the
Event Flow Graph of Aripuca Application 41

4.10 Test-Paths for the CFG E1 of the Aripuca Application 42

4.11 Test-Paths for the CFG E3 of the Aripuca Application 42

4.12 Control Flow Graphs associated with corresponding events of the
Event Flow Graph of Tachometer Application 43

4.13 Test-Paths for the CFG E1 of the Tachometer Application 44

4.14 Test-Paths for the CFG E2 of the Tachometer Application 44

4.15 No. of EFG Test-Paths and no. of complete test-paths in each
Subject Program . 51

4.16 Comparison of Proposed Approach with Existing Approach 53

xi

List of Tables

2.1 Literature Review . 14

3.1 Test-Inputs for each Complete Test-Path 29

4.1 Features of the Subject Programs 35

4.2 Test-Inputs for a Complete Test-Path of the Aripuca EFG 48

4.3 Test-Inputs for a Complete Test-Path of the Tachometer EFG . . . 49

4.4 No. of EFG Test-Paths, no. of complete test-paths, and bug-free
paths in each Subject Program . 50

4.5 Comparison of Proposed Approach with Existing Approach 52

xii

Abbreviations

APK Application Package Kit

CFG Control Flow Graph

EFG Event Flow Graph

FNs False Negatives

FPs False Positives

TP Test Path

TR Test Requirement

xiii

Chapter 1

Introduction

In the recent era of technology, smartphones have improved in terms of their pro-

cessing speed and memory capacity. They come up with a wide range of I/O com-

ponents and sensors, such as Wi-Fi, GPS, and so on [1]. Due to these components,

application developers are developing complex applications for smartphones, which

are often energy-inefficient [2]. These energy-inefficiencies limit the battery power

of the smartphone. We can categorize the energy-inefficiencies in the smartphone

applications into energy-bugs and energy-hotspots [2]. We say that an application

is energy-inefficient due to an energy-bug when it prevents the smartphone from

becoming idle even after it has been closed/completed its execution and there is

no user activity [2]. Whereas an application is energy-inefficient due to energy-

hotspot is a scenario, in which an application is executing on a smartphone and

it starts consuming a high amount of battery power [2]. An energy-bug arises

when an application acquires a resource in the code according to its need but the

developer might omit the call to release a resource after acquiring it. This causes

resource-leaking which leads to energy-consumption and causes energy-bug.

We focus on the detection of energy-bugs in Android applications due to resource

leaks i.e. such resources that should be manually released by the developers but

they failed to do so [1] and as a result, such buggy applications start consuming

the smartphone battery.

1

Introduction 2

1.1 Classification of Energy-Bugs

The energy-bugs that can be present in an Android application can be classified

as:

• Resource Leak: An application must release all the resources (such as

Wi-Fi, GPS) it acquires during execution [2] [3].

•Wakelock Bug: In Android, a power management mechanism that helps

an application to indicate that the device needs to stay awake. If we inap-

propriately use the Wakelocks, this can cause the device to be stuck in a

high-power state even if the application has finished its execution. We call

this situation a Wakelock bug [2] [3].

• Vacuous Background Services: Background services are expensive in

terms of energy consumption. A vacuous background service bug occurs

when an application mishandles such services [2] [3].

• Immortality Bug: If we close an application while it is still in high

power-consumption state then it creates an immortality bug [2] [3].

1.2 Resource Acquisition in Android Applica-

tions

There are two ways to acquire a resource in an application. First, is a local

resource that can be declared in a function and we assume that the developer

releases it at the end of the function. Second, is a global resource that can be

declared outside all the functions and within a class and that must be released

on all exit-paths from its request point. We should focus on all exit-paths to

detect missing resource operations to detect resource leaks [4]. The applications

containing an energy-bug may not fail or stop during execution due to which it is

difficult to locate energy-bugs in them. Besides, the developers only focus on the

functionality of the application; they do not conduct performance testing before

releasing the application [1].

Introduction 3

1.3 Energy-Bug Detection Techniques

The existing techniques perform energy-bug detection at the method level by per-

forming static or dynamic analysis technique.

A method that represents an event event-handler corresponding to an event within

the application.

They generate a Control Flow Graph of each method and when a resource is

acquired at any line of a method and is not released by the developer, they call it

an energy-bug.

Figure 1.1 shows that a location-update resource is acquired at line 6 of the method

but the developer did not release the resource which causes an energy-bug.

While at the application level, if a resource is acquired in one method and released

in the other method, and both the methods execute in the paths of the Event Flow

Graph it becomes a false-positive.

An example code of a method is shown in Figure 1.1 in which a location-update

resource is acquired in line 6.

Figure 1.2 shows the example code of a method in which the location-update

resource acquired in Figure 1.1 is released in line 13.

Figure 1.1: An Example Code of Method Acquiring a Resource

Introduction 4

Figure 1.2: An Example Code of Method Releasing a Resource

When we execute the above two methods in the paths of the Event Flow Graph, it

becomes a false-positive. But if we execute these event-handlers in isolation, they

cause an energy-bug. Several static and dynamic analysis techniques exist in the

literature for the detection of energy-bugs in Android applications.

1.3.1 Static Analysis Techniques

Static analysis techniques work in a non-run-time environment and detect any

possible bug in the code while the code is not executing at all. Static analysis

techniques take longer to detect bugs from a large-scale application [5]. These

techniques cannot detect those bugs which can be detected by the dynamic analysis

techniques at run-time and therefore generate false-positives [6].

1.3.2 Dynamic Analysis Techniques

Dynamic analysis techniques work in a run-time environment while the code is

executing and can detect the bugs which cannot be detected by the static analysis

techniques [6] and remove false-positives. However, dynamic analysis techniques

become costly because multiple paths have to be executed. Therefore, dynamic

analysis techniques are better than static analysis techniques.

Introduction 5

1.3.3 Hybrid Analysis Techniques

Hybrid approaches also exist in the literature which is the combination of both

static and dynamic analysis techniques [2] [3]. However, they generate false-

positives due to static analysis and are costly due to dynamic analysis.

We have chosen a hybrid approach as a base that detects the energy-bugs statically

at the application level [3]. They generate an Event Flow Graph of the application.

The nodes of the Event Flow Graph represent the events and the edges represent

the sequence of user-interactions or event-sequences in which the events execute

[2]. The paths of the Event Flow Graph represent the flow of event-sequences in

which they execute. They associate each node of the Event Flow Graph with its

corresponding event-handler and generate a Control Flow Graph of each event-

handler. They focus on those events in the paths of the Event Flow Graph whose

corresponding event-handler has acquired a resource and find the exit event-node

whose corresponding event-handler has released that particular resource. Other-

wise, this becomes an energy-bug. They statically generate the event-sequences

(paths) of the Event Flow graph and do not apply any graph coverage criterion

to generate the paths due to which some paths might be missed and it results in

false-positives.

1.4 Problem Statement

The existing techniques perform energy-bug detection at the event-handler level.

When a developer acquires a resource in an event-handler and omits a call to

release that resource in that particular event-handler, it becomes an energy-bug

at the event-handler level. At the application level when a resource is acquired in

an event-handler and released in another event-handler, and when both the event-

handlers execute in the path of the Event Flow Graph at the application level, it

makes that energy-bug detected at the event-handler level a false-positive because

the acquired resource is released at the application level. The existing techniques

Introduction 6

do not focus on application level bug detection. They focus on the event-handlers

in isolation and therefore generate false-positives.

1.5 Research Questions

For this research, the following factors must be taken into account:

RQ 1: What are the gaps in the existing techniques?

We have carried out the literature survey to find the gaps in the existing techniques

for the detection of energy-bugs in Android applications.

RQ 2: How to enhance the existing techniques for application level energy-bug

detection?

We have proposed an approach that enhances an existing technique for the appli-

cation level energy-bug detection and removes false-positives.

RQ 3: Is the proposed technique better in terms of eliminating false-positives?

We have performed experiments on different real-life Android applications for the

comparison of existing techniques with the proposed technique.

We have eliminated false-positives generated in the existing technique.

Our research is carried out to answer the above-mentioned research questions.

1.6 Research Methodology

1. First of all, we have done the literature review to find the common techniques

that are relevant to the detection of energy-bugs in Android applications.

After studying the various techniques, we conclude that the existing tech-

niques detect the energy-bugs at the event-handler level only.

Introduction 7

They do not consider the application level bug detection and generate false-

positives.

2. To overcome the gap in exiting techniques, we have enhanced the existing

technique for the detection of energy-bugs at the application level by iden-

tifying that the energy-bugs detected at the event-handler level are false-

positives at the application level.

3. The implementation of our proposed technique is performed in the following

phases:

(a) In the first phase, we generate the Event Flow Graph of each An-

droid application. Each node of the Event Flow Graph represents an

event of the Application and the edges represent the sequence of user-

interactions.

(b) In the second phase, we generate the test-path of the Event Flow Graph

by applying the edge-coverage criterion.

The test-paths generated from the Event Flow Graph represent the

events that occur in the Event Flow Graph.

(c) In the third phase, we generate the Control Flow Graph of those events

from the test-paths of the Event Flow Graph whose corresponding

event-handler acquires or releases a resource.

We associate the Control Flow Graph of each event-handler with its

corresponding event in the Event Flow Graph.

After that, we generate test-paths of each Control Flow Graph.

We replace these test-paths with their corresponding events that occur

in the test-paths of the Event Flow Graph to make a complete test-path.

(d) In the last phase, we make test inputs for each complete test-path and

evaluate them for the presence of energy-bugs.

4. We compare our proposed technique with the existing technique and ver-

ify that the energy-bugs detected from the existing technique at the event-

handler level are false-positives.

Introduction 8

1.7 Research Contribution

In this research work, we have enhanced an existing technique that will identify the

energy-bugs detected at the event-handler level by making a Control Flow Graph

are false-positives at the application level. We generate the Event Flow Graph for

an application and generate its test-paths by applying the graph coverage criterion.

We also generate the Control Flow Graph for each event that occurs in the test-

paths of the Event Flow Graph and generate its test-paths by again applying the

graph coverage criterion. We make a complete test-path by using the test-paths

of both the Control Flow Graph and the Event Flow Graph. In this way, we get

multiple complete test-paths against each test-path of the Event Flow Graph. We

evaluate these complete test-paths and identify that the energy-bugs detected at

the event-handler level are false-positives at the application level.

1.8 Thesis Structure

For the sake of clarity and understanding, the thesis is divided into the following

chapters:

• Chapter 1 describes the introduction of the proposed technique and its

objective.

• Chapter 2 describes the literature survey in which we researched the ex-

isting techniques.

• Chapter 3 describes the proposed solution and implementation of the pro-

posed solution.

• Chapter 4 describes the experimental results of different Android applica-

tions.

• Chapter 5 describes the research questions and the conclusion.

Chapter 2

Literature Review

This chapter describes several static, dynamic and hybrid approaches that exist

in the literature for the detection of energy-bugs in Android applications due to

resource-leaking. It also describes the comparison between the existing techniques.

2.1 Static Approach

The static approach performs the static analysis of the code to check the defects

in the code without executing the code of the application. It identifies the possible

bugs in the code but generates false-positives. Static approaches take longer to

detect bugs from a large-scale application [5].

2.2 Dynamic Approach

The dynamic approach analyzes the dynamic behavior of the code by executing

the code. The dynamic approach can always find the errors at the run-time that

a static approach cannot find [6]. Therefore, it is better than the static approach.

However, they become costly because multiple paths have to be executed. The

dynamic approach executes the application; therefore, chances are higher to find

9

Literature Review 10

bugs in the application than a static approach. That is why we have not considered

static approaches in the literature study.

2.3 Hybrid Approach

The hybrid approach is a combination of both static and dynamic approaches. It

provides the benefit of both static and dynamic approaches [2] [3]. It generates

the false-positives due to static approach and is costly due to dynamic approach.

2.4 Literature Studies

In 2012, Zhang et al. [7] presented an automated detector of energy leaks called

ADEL. It tracks the information flow of network traffic within an application. It

helps to identify resource- leaks due to network communications (such as Wi-Fi

and 3G). It uses dynamic taint tracking to detect energy leaks and labels each

data object with a tag and tracks the network data from its origination to its use

or until its deletion. They evaluated their approach with 15 real-world Android

applications and found energy leaks in 6 of them. The common causes of energy-

leaks were the inefficient data refreshing behavior and APIs were misinterpreted.

They neglected control-flow and only focused on data-flow due to which false-

positives were generated.

In 2013, Liu et al. [4] presented an automated approach, which focuses on sensory

data utilization at different states and locates energy inefficiency problems. It

implements this approach as a tool named GreenDroid. It derives the Application

Execution Model (AEM) from specifications that simulate an application’s runtime

behavior and specifies calling relationships between event handlers. It checks which

sensor listeners have forgotten to unregister at the end of the execution. They

evaluated their approach with 6 open-source Android applications. They analyzed

each Android application for its sensory data utilization. The common causes of

Literature Review 11

energy-leaks were due to sensory data utilization and sensor-listener misusage.

Complex test-inputs could not be generated in their approach due to which false-

negatives are generated.

In 2014, Liu et al. [8] presented a dynamic approach to detect the energy-

inefficiency problems in the Android applications due to missing deactivation of

sensors or wake-locks and cost-ineffective use of sensor data. They have enhanced

the approach proposed in [4] by exploring the state space of an application. They

monitor its sensory data utilization and usage of sensors and wakelocks. It gener-

ates detailed reports to help developers locating energy problems in the Android

applications. They evaluated their approach with 13 open-source Android appli-

cations. They found energy-related problems in 11 of them. The common cause

of energy-leaks was due to missing wakelock deactivation, missing sensor deacti-

vation, and sensory data was underutilized. Their proposed approach was unable

to generate complex inputs such as gestures or video inputs and generated false-

negatives.

In 2014, Banerjee et al. [2] presented an automated test generation framework for

the detection of energy hotspots/bugs in Android applications. The framework

consists of two components: the guidance component and the hotspot/bug detec-

tion component. In the guidance component, they discuss the exploration of event

traces to reveal energy hotspots/bugs. In the hotspot/bug detection component,

they execute an application on a smartphone and attach a power meter with it.

For a given event trace, the power meter measures the power consumption of the

application. They evaluated their approach with 30 Android applications that are

freely available and reported energy-bugs in 10 them. Their proposed approach

was unable to reach all the states of the GUI of an Android application. Their

proposed approach generated false-positives because some portions of code could

not be analyzed.

In 2015, Abbasi et al. [9] presented an operational definition of resource-leak prob-

lems. They described the scenario with the help of a framework for the presence

of energy bugs. They have detected the energy-bugs when the applications or the

Literature Review 12

platforms update. They analyzed that the detection of energy-bugs in Android

applications is difficult to perform because the applications do not stop/fail if an

energy-bug is present in them. Their focus was on resource-leak problems. How-

ever, they did not implement the framework to detect energy bugs. They evaluated

their approach using a browser application and the YouTube application. They

did not implement their approach to detect the energy-bugs from the Android

applications.

In 2016, Wang et al. [10] presented an extension for GreenDroid [8] that provides

the ability to support new features of Android 5.0. It focuses on sensor-listener

misusage and wakelock misusage. It provides a state machine based on Application

Execution Model (AEM). They have also better organized the reports represent the

important information. However, it neglected some patterns of wakelock misuses

like multiple wakelock acquisitions. They evaluated their approach by using 13

real-world Android applications. Their results proved that the extension they

have done for the GreenDroid named E:GreenDroid was effective. However, they

missed some patterns of wakelock misuses and generated false-negatives. They

were unable to detect multiple wakelock acquisition [10].

In 2017, Li et al. [11] presented another extension for GreenDroid [8]. They de-

veloped a tool named CyanDroid. It focuses on generating sensory data; it tracks

the propagation of sensory data and analyses its utilization. They also analyze

whether the sensory data is being used cost-effectively. They systematically gener-

ate the sensory data and enhance the GreenDroid for the detection of energy-bugs

in Android applications. They evaluated their approach by using 4 real-world An-

droid applications and reported energy bugs in all of them. They were unable to

simulate the complex user-events and generated false-negatives.

In 2017, Liu et al. [12] presented an approach to extend GreenDroid [7] and

developed a tool named NavyDroid. It focuses on multiple patterns of wake-locks

misuses. They proposed an approach that consists of a monitor and simulation

part. In the simulation; they explore the state space of an application, and in

the monitor part; they monitor the presence of energy-bugs. They evaluated

Literature Review 13

their approach by using 17 real-world Android applications. They evaluated more

energy-bugs problems than the E:GreenDroid [10]. However, they were unable to

detect multiple wakelock acquisition and generated false-negatives.

In 2018, Banerjee et al. [3] presented both static and dynamic approaches for the

detection of energy bugs in an application. In [2], they generated the Event Flow

Graph of the user-generated events. Whereas, in this approach, they have gener-

ated Control Flow Graph of the event-handlers along with each event of the Event

Flow Graph. They associate each event of an Event Flow Graph with the Control

Flow Graph of the corresponding event-handler. They evaluated their approach

by using 35 Android applications from online sources and reported energy-bugs

in 12 of them. 8 of the applications had energy-bugs due to GPS. 2 of the appli-

cations had energy-bugs due to GPS and sensors and 2 of them had energy-bugs

due to improper wakelock usage. Their approach statically analyzes the code and

generated overestimated results that also include infeasible paths and generates

false-positives [3].

In 2018, Abbasi et al. [13] presented an approach that focuses on tail energy

bugs and identified their root causes. They developed a Java-based tool to detect

the presence of Application Tail Energy Bugs (ATEBs) and check the behavior

of activities or services of the Android applications in the presence of wakelocks.

They measure the power-consumption reading of each application. They evaluated

their approach with the help of 32 experiments and observed the behavior of

application’s components in the presence or absence of wakelocks. They did not

provide any information regarding how to release wakelocks automatically once

they have been acquired.

In 2020, Li et al. [48] presented an approach that focuses on the detection of

energy-bugs due to resource leaks such as Wi-Fi, GPS. They evaluated their ap-

proach by using 27 real-life Android apps like Chrome and Firefox.

The main root cause detected for energy-inefficiency was unnecessary workload.

However, their approach eliminated false positives as well.

Literature Review 14

2.5 Analysis and Comparison

Table 2.1 lists the comparison of all the techniques proposed in the literature.

Several energy problems are discussed in the literature related to network com-

munications (such as Wi-Fi and 3G), missing deactivation of sensors/wake-locks,

hardware components, etc. Some of them follow the white box testing strategy to

generate test cases and some of them follow the black box testing strategy. Some

of them follow data flow analysis to detect energy bugs that also includes infea-

sible paths and generate false positives. Some use Application Execution Model

(AEM) to simulate the runtime behavior of an application. The table 2.1 rep-

resents the year in which each literature study is published, the technique used

in each literature study, objective of each literature study and the weaknesses in

them.

Table 2.1: Literature Review

Ref.

No.

Sr.

No.

Year Technique

used

Objective Weaknesses

[7] 1. 2012 Dynamic Focus on detection

of energy bugs due

to resource leaks

i.e. unnecessary

network communi-

cation

•Tracks data-flow,

neglects control-

flow & reports FNs

•Performs method-

level bug detection

& reports FPs

[4] 2. 2013 Dynamic Focus on detec-

tion of energy-

inefficiency prob-

lems due to re-

source leaks i.e.

sensory data uti-

lization

•Cannot generate

complex inputs &

reports FNs

•Performs method-

level bug detection

& reports FPs

Literature Review 15

Ref.

No.

Sr.

No.

Year Technique

used

Objective Weaknesses

[8] 3. 2014 Dynamic Focus on detection

of energy problems

due to wakelocks

and resource leaks

i.e. sensors

•Cannot generate

gesture and video

inputs & reports

FPs

•Performs method-

level bug detection

& reports FNs

[2] 4. 2014 Hybrid Focus on detection

of energy- hotspots

and energy-bugs

•Performed app-

level but detection

bug neglected cov-

erage criterion &

reports FNs

[9] 5. 2015 Dynamic Focus on detection

of energy-bugs due

to resource leaks i.e.

Wi-Fi, GPS

•Do not consider

upgraded features

and functionality of

app & reports FNs

•Performs method-

level bug detection

& report FPs

[10] 6. 2016 Dynamic Focus on detection

of energy problems

due to wakelocks

misuse and resource

leaks i.e. sensors

•Neglects some pat-

terns of wakelocks

& reports FNs

•Performs method-

level bug detection

& reports FPs

Literature Review 16

Ref.

No.

Sr.

No.

Year Technique

used

Objective Weaknesses

[11] 7. 2017 Dynamic Focus on detec-

tion of energy-

inefficiency prob-

lems due to re-

source leaks i.e.

sensory data uti-

lization

•Cannot simulate

complex inputs &

reports FNs

•Performs method-

level bug detection

& reports FPs

[12] 8. 2017 Dynamic Focus on detection

of energy problems

due to wakelocks

and resource leaks

i.e. sensors

•Cannot address

unnecessary pat-

terns of wakelock

misuses & reports

FNs

•Performs method-

level bug detection

& reports FPs

[3] 9. 2017 Hybrid Focus on detection

of energy-bugs due

to wakelocks and

resource leaks i.e.

GPS, Sensors

•Performs app-level

bug detection,

neglects coverage

criterion & reports

FNs

•Does not generate

all complete test-

paths & reports

FPs

Literature Review 17

Ref.

No.

Sr.

No.

Year Technique

used

Objective Weaknesses

[13] 10. 2018 Dynamic Focus on detection

of energy bugs due

to wakelocks and

resource leaks i.e.

GPS

•App components

like audio and

wireless services are

not considered &

reports FNs

•Performs method-

level bug detection

& reports false

positives

[48] 11. 2020 Hybrid Focuses on detec-

tion of energy is-

sues due to resource

leaks i.e. Wi-Fi,

GPS

•Includes infeasible

paths & reports

FPs

•Performed

method-level bug

detection & reports

false positives

It is concluded that the existing literature studies detect different types of energy

bugs. After analyzing the existing studies, we conclude that the existing proposed

solutions consider both static and dynamic analysis techniques for detecting energy

bugs but we focused on dynamic and hybrid techniques. Besides that, existing

studies only focus on the detection of energy-bugs at the method level. They do

not focus on application-level energy-bug detection and therefore generate false-

positives.

Chapter 3

Proposed Approach

In the literature survey, we have identified the most relevant existing studies related

to energy bugs detection in Android applications. Some of the studies are based on

dynamic detection of energy-bugs and few of them are hybrid approaches. Existing

studies do not focus on the detection of energy bugs at the application-level. They

only focus on the method level energy bug detection.

When energy-bugs are detected at the method level using Control Flow Graph

(CFG), it is considered that if a resource is acquired at any line in the method

then it must be released within that particular method where the resource has

been acquired.

We have chosen a hybrid approach [3] to extend my work. Hybrid approaches

provide the benefit of both static and dynamic approaches.

However, the hybrid approach that we have chosen to extend is using a static

analysis technique for the detection of energy bugs.

They have worked on application-level by making the Event Flow Graph of the

application. They associate each event with its corresponding event-handler and

detect the energy bugs in those event-handlers. They do not detect energy-bugs

at the application level and therefore, generating false-positives. Furthermore,

they have not used any coverage criterion in their approach and that is why their

18

Proposed Methodology 19

approach is reporting false-negatives as well. To overcome the gap in the existing

studies, we have enhanced an existing technique [3].

Our proposed approach aims to enhance the existing technique by detecting false-

positives from the existing technique [3] and shows the energy-bugs detected at

the method level using Control Flow Graph are not bugs at the application-level

but are false-positives.

Our proposed approach detects only real energy-bugs in Android applications and

eliminates false-positives.

3.1 Proposed Solution

The flowchart of our proposed solution is shown in Figure 3.1.

We take APK file of each application as an input and generate the Event Flow

Graph of each application.

The Event Flow Graph is generated by using the Monkey tool. It is a command-

line tool that sends a stream of random user-events to the system and generates

Event Flow Graph.

Once the Event Flow Graph is generated, we make test-paths of the graph by

applying the edge-coverage criterion.

It is a graph-coverage criterion that covers all the edges of the graph.

In parallel, we take source code of each application and generates the Control Flow

Graph of the events in which a resource s acquired or released and make test-paths

of the Control Flow Graph by also applying the criterian named as edge-coverage

criterion.

Then, we combine test-paths of both the Event Flow Graph and the Control Flow

Graph and make complete test-paths. We make test-inputs for each complete

test-path and verify the existence of energy-bugs in the applications.

Proposed Methodology 20

Figure 3.1: Flowchart of Proposed Solution

Proposed Methodology 21

An example application is used to describe the processes of our proposed solution

in detail.

This example is based on location tracking by using GPS.

A friend can track the location of another friend and they both can share their

locations with each other.

This example contains 8 event-handlers in it against each event.

3.1.1 Event Flow Graph Generation

The Event Flow Graph is abbreviated as EFG. It is a graph representation of

Graphical User Interface (GUI) whose nodes represent user-events and the edges

represent a sequence of user-interactions i.e.an edge from event e1 to event e2

represents that the event E2 can be performed immediately after the event E1

[14].

The Event Flow Graph is generated for the whole application.

An application contains events and the corresponding event-handlers to each event.

Each event becomes a node of the Event Flow Graph. The Event Flow Graph is

generated using the Monkey tool for each particular application.

A monkey is a command-line tool that can be run on an emulator.

It takes the apk file as an input and generates a stream of random user-events such

as touch events, click events, or gesture events [15] for a particular application.

These events represent the flow in which they are executed in an application and

helps in creating the Event Flow Graph for each application.

The Event Flow Graph as a whole represents the flow in which the events are

executed within an application.

Figure 3.2 represents the Event Flow Graph of the example application.

Proposed Methodology 22

Figure 3.2: Event Flow Graph of the Example Application

3.1.2 Test-Path Generation for the Event Flow Graph

A test-path is a complete path that starts from the initial node of the graph and

ends at its final node. In our case, a test-path is a sequence of events and contains

multiple events in it. It is an execution path within the whole application. We

convert the Event Flow Graph into XML code. The sample XML code of the

Event Flow Graph shown in Figure 3.2 is given below in Figure 3.3:

Figure 3.3: Sample XML Code of the Event Flow Graph shown in Figure 3.2

Proposed Methodology 23

The node name in the XML code represents the event number and label shows

the name of the event. Source node represents the event number (E1) from where

the edge is going to a target node which also represents the event number (E2).

The edge from source node (event E1) to target node (event E2) represents that

the event E2 can be performed immediately after the event E1. For generating

the test-paths of the Event Flow Graph, we pass the XML file as an input to a

program and apply the edge coverage criterion on it. The edge coverage criterion

is a graph coverage criterion. The test requirement for any coverage criterion is

that it should cover all the requirements. Therefore, the test requirement for edge

coverage criterion is that it should cover all the edges of the graph. The edges of

the Event Flow Graph shown in Figure 3.2 are shown below in Figure 3.4:

Figure 3.4: Edges of the Event Flow Graph for Aripuca Application

After applying the edge coverage criterion, we get the test-paths of the Event Flow

Graph as an output. The output is shown in Figure 3.5.

Figure 3.5: Test-Paths of the Event Flow Graph shown in Figure 3.2

Proposed Methodology 24

We have made sure that all the edges of the graph are covered by the generated

test-paths.

The edges covered from test-path 1 are:

E1→ E2, E1 → E8, E2 → E3, E2 → E5, E3 → E2, E3 → E7, E5 → E1, E7 →

E3

The edges covered from test-path 2 are:

E1→ E3, E2→ E1, E2→ E6, E3→ E1, E6→ E2

The edges covered from test-path 3 are:

E1→ E4, E4→ E8, E5→ E2, E8→ E1

Hence, all the edges of the Event Flow Graph are covered by the test-paths.

3.1.3 Complete Test-Path Generation

Complete test-paths are those paths that are generated after combining test-paths

of both the CFG and the Event Flow Graph. CFG is generated for the event-

handlers. We have generated the CFG by using the CFG Factory plugin available

in Eclipse software. This plugin generates the Control Flow Graph by using the

Java code and exports it in the XML format, DOT format, and several image

formats. CFG is a graph whose nodes represent a statement number of the program

and the edges represent the flow in which these statements are executed [16].

When the test-paths are generated for the EFG, we choose those events from each

test-path whose corresponding event-handler acquires or releases a resource and

generate a Control Flow Graph for each of these event-handlers. We associate each

CFG with its corresponding event. Figure 3.6 represents the CFG associated with

the events of the EFG. It is to be noted that after analyzing the source code of this

example, we have mentioned only the CFG of those event-handlers in which the

resource is being acquired or released. Other event-handlers in which a resource

is neither acquired nor released are not mentioned. The events E2, E5, and E6

Proposed Methodology 25

are the events from each test-path of the Event Flow Graph whose corresponding

event-handlers have acquired or released a resource in their code. The Control

Flow Graph of the other event-handlers is not generated because no resource is

acquired or released in them and therefore, we cannot find any energy-bug in their

path. After generating the Control Flow Graph for the event-handlers, we export

the Control Flow Graph in the XML file format. We have generated the Control

Flow Graph by using the Control Flow Graph Factory plugin available in the

Eclipse software. With the help of this plugin, we can convert the Control Flow

Graph in different file formats such as XML file format, DOT file format. We pass

this XML file as an input to the program. The program applies the edge-coverage

criterion on it and generates the test-paths for the Control Flow Graph. These

test-paths cover all the edges of the graph.

Figure 3.6: Control Flow Graphs associated with Events of the EFG in Figure

Proposed Methodology 26

The test-paths generated from the Control Flow Graph of the Event E2 shown in

figure 3.6 are shown in figure 3.7.

Figure 3.7: Test-Paths for the Control Flow Graph of the Event E2

The test-paths generated from the Control Flow Graph of the Event E5 shown in

figure 3.6 are shown in figure 3.8.

Figure 3.8: Test-Paths for the Control Flow Graph of the Event E5

The test-paths generated from the Control Flow Graph of the Event E6 shown in

Figure 3.6 are shown in Figure 3.9.

Figure 3.9: Test-Paths for the Control Flow Graph of the Event E6

When the test-paths are generated for each of the Control Flow Graph than we

replace these test-paths of each Control Flow Graph with their respective events

Proposed Methodology 27

in the test-paths of the Event Flow Graph to make a complete test-path. In this

way, multiple complete test-paths are generated against one path of the Event Flow

Graph. We consider only those test-paths of the Event Flow Graph where a corre-

sponding Control Flow Graph is created. Because they are the only events where

a resource is being acquired or released in their corresponding event-handlers.

Complete Test-Paths for the Event Flow Graph

Test-Path 1 of EFG:

E1→ E2→ E3→ E7→ E3→ E2→ E5→ E1→ E8

We replace the nodes E2 and E5 with the test-paths of their corresponding Control

Flow Graphs. After replacement, multiple test-paths are generated against test-

path 1 of EFG that are called complete test-paths.

• E1 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 10 → 11 → E3 → E7 → E3 →

1 → 2 → 3 → 4 → 5 → 6 → 7 → 9 → 10 → 11 → 1 → 2 → 3 → 4 → 5 → 6 →

7→ 8→ 9→ 11→ E1→ E8

• E1 → 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ 10→ 11→ E3→ E7

→ E3→ 1→ 2→ 3→ 4→ 5→ 6→ 7→ 9→ 10→ 11→ 1→

2→ 3→ 4→ 5→ 7→ 8→ 9→ 11→ E1→ E8

Test-Path 2 of EFG:

E1→ E2→ E1→ E3→ E1→ E2→ E6→ E2→ E5→ E1→ E8

We replace the nodes E2, E5, and E6 with the test-paths of their correspond-

ing Control Flow Graphs. After replacement, multiple test-paths are generated

against test-path 2 of EFG that are called complete test-paths.

• E1 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 10 → 11 → E1 → E3 → E1 →

1 → 2 → 3 → 4 → 5 → 6 → 7 → 9 → 10 → 11 → 1 → 2 → 3 → 4 → 5 → 6 →

7 → 8 → 9 → 10 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 10 → 11 → 1 → 2 →

3→ 4→ 5→ 6→ 7→ 8→ 10→ 11→ E1→ E8

• E1 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 10 → 11 → E1 → E3 → E1 →

1 → 2 → 3 → 4 → 5 → 6 → 7 → 9 → 10 → 11 → 1 → 2 → 3 → 4 → 5 → 6 →

Proposed Methodology 28

7 → 8 → 9 → 10 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 10 → 11 → 1 → 2 →

3→ 4→ 5→ 7→ 8→ 9→ 11→ E1→ E8

Test-Path 3 of EFG:

E1→ E4→ E8→ E1→ E2→ E5→ E2→ E5→ E1→ E8

We replace the nodes E2 and E5 with the test-paths of their corresponding Control

Flow Graphs. After replacement, multiple test-paths are generated against test-

path 3 of EFG that are called complete test-paths.

• E1 → E4 → E8 → E1 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 10 → 11 →

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 11 → 1 → 2 → 3 → 4 → 5 → 6 →

7→ 9→ 10→ 11→ E1→ E8

• E1 → E4→ E8→ E1→ 1→ 2→ 3→ 4→ 5W → 6→ 7→ 8→ 10→ 11→

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 11 → 1 → 2 → 3 → 4 → 5 → 7 →

8→ 9→ 11→ E1→ E8

3.1.4 Execution Results/ Detected Bugs

When the complete test-paths are generated, we have to make test-inputs for each

test-path. We take each test-path of the Event Flow Graph and generate multiple

complete test-paths against it. Once the complete- test-paths are generated, we

make test-inputs and evaluate those complete test-paths for the presence of bugs.

We make the test-inputs by replacing all the events of the Event Flow Graph and

all the test-paths of the Control Flow Graph in the complete test-paths with their

corresponding event-name. By considering the Control Flow Graph test-paths

only, we saw that there is a bug at CFG E2 because a resource is acquired and not

released. However, at the Event Flow Graph level, every resource acquired at each

path is also released. These complete test-paths show that the bugs detected in

Control Flow Graph are not bugs in the Event Flow Graph but are false positives.

Table 3.1 describes the test-paths of the Event Flow Graph, complete test-paths

corresponding to each particular event, and their output.

Proposed Methodology 29

Table 3.1: Test-Inputs for each Complete Test-Path

EFG Test-Path Complete Test-Paths Out-

put

at

CFG

Level

Out-

put

at

EFG

Level

E1→ E2→ E3→

E7→ E3→ E2→

E5→ E1→ E8

E1→ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11→ E3

→ E7 → E3 →

1, 2, 3, 4, 5, 6, 7, 9, 10, 11→ 1, 2,

3, 4, 5, 6, 7, 8, 9, 11→ E1→ E8

Energy-

Bug

No

bug

E1→ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11→ E3

→ E7→ E3→ 1, 2, 3, 4, 5, 6, 7, 9, 10,

11→ 1, 2, 3, 4, 5, 7, 8, 9, 11→ E1→ E8

Energy-

Bug

No

bug

E1→ E2 → E1 →

E3→ E1→

E2 → E6 → E2 →

E5→ E1→

E8

E1→ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 → E1 →

E3

→ E1 → 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 →

1, 2, 3,

4, 5, 6, 7, 8, 9, 10 →

1, 2, 3, 4, 5, 6, 7, 8, 10, 11→

1, 2, 3, 4, 5, 6, 7, 8, 10, 11→ E1→ E8

Energy-

Bug

No

bug

E1→ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 → E1 →

E3 → E1 → 1, 2, 3, 4, 5, 6, 7, 9, 10, 1 →

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 →

1, 2, 3, 4, 5, 6, 7, 8, 10, 11 →

1, 2, 3, 4, 5, 7, 8,

9, 11→ E1→ E8

Energy-

Bug

No

bug

E1→ E4 → E8 →

E1 → E2 → E5 →

E2 → E5 → E1 →

E8

E1→ E4 → E8 → E1 →

1, 2, 3, 4, 5, 6, 7,

8, 10, 11 → 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 →

1, 2, 3, 4, 5, 6, 7, 9, 10, 11→

E1→ E8

Energy

Bug

No

bug

Proposed Methodology 30

E1→ E4 → E8 → E1 →

1, 2, 3, 4, 5, 6, 7,

8, 10, 11 → 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 →

1, 2, 3,

4, 5, 7, 8, 9, 11→ E1→ E8

Energy

Bug

No

bug

It is concluded that multiple complete test-paths can be generated against every

single test-path of the Event Flow Graph. When we generated the test-paths for

each Control Flow Graph, we considered each of them in isolation and found that

the CFG E2 contains an energy-bug at the method level. The test-paths 1 and

2 of the CFG E2 are buggy paths because a location-update resource is acquired

on node 6 but not released anywhere in this method. However, after generating

complete test-paths, we found that when the events E5 and E6 occur after the

event E1 in the test-path of the Event Flow Graph, the location-update resource

is released and there is no energy-bug is detected and therefore, it makes the

energy-bug detected at the method level a false-positive at the application level.

Chapter 4

Results and Discussion

This chapter describes the results of the experiments that we have performed on

different subject programs and also their results in detail. We have chosen 11

different subject programs from the existing literature and applied our proposed

technique on them.

We have generated the Event Flow Graph of each subject program. After gen-

erating the Event Flow Graph, we make test-paths of the Event Flow Graph by

applying the edge coverage criterion. The edge coverage criterion is a graph cov-

erage criterion that covers all the edges of the graph. These test-paths represent

the sequence of events in which they are generated within the application.

We choose those events from the test-paths of the Event Flow Graph whose cor-

responding event-handler has acquired or released a resource in its code.

We make the Control Flow Graphs of such event-handlers and associate the Con-

trol Flow Graphs with their corresponding event in the Event Flow Graph. We

make the test-paths of each Control Flow Graph by applying the edge coverage

criterion.

When the test-paths are generated for each of the Control Flow Graph, we replace

these test-paths with the corresponding event in the test-path of the Event Flow

Graph to make a complete test-path.

31

Results and Discussion 32

4.1 Subject Programs

In our experiment, we have used 11 different subject programs. They are discussed

below in detail:

1. Aripuca

The aripuca is an Android-based GPS tracking application. It records the

track waypoints and the locations in real-time and displays them on Google

Maps. It also adds the waypoints, imports and exports data to or from differ-

ent formats. The problem with this application is that it acquires a location

update resource in one of its activities but does not release it within that

activity due to which location updates stay on and consumes smartphones’

battery that causes an energy-bug [17].

The source code of the Aripuca application is given in [18] and the apk file

can be downloaded from [19].

2. Tachometer

The tachometer is an Android-based application that measures the speed and

location and exports the data in a CSV file. It is for use in the car, airplane,

train, etc. It is specifically for travelers who want to document the exact

location where they stayed. The problem with this application is that when

we start to measure the location, it acquires a location update resource in one

of its activities but does not release it due to which it consumes smartphones’

battery that causes an energy-bug [20].

The source code of the Aripuca application is given in [21] and the APK file

can be downloaded from [22].

3. Droid-AR

Droid-AR is an android based application for Android. The problem with

this application is that it causes the GPS to stay on even after the application

has been closed by the user.

The source code of the Droid-AR is given in [23] and the apk file can be

downloaded from [24].

Results and Discussion 33

4. Osmdroid

Osmdroid is an Android-based application and a replacement for Google’s

MapView.

The problem with this application is that it causes the location-updates to

stay on even after the application has been closed [25].

The source code of the Osmdroid is given in [26] and the apk file can be

downloaded from [27].

5. SP-Transport

SP-Transport is an Android-based application that helps you to know about

the arrival times of buses. It helps you to know about different bus stops.

You can also save stops.

The problem with this application is that it causes the GPS to stay on even

after the application is paused [28].

The source code of the SP-Transport is given in [29] and the apk file can be

downloaded from [30].

6. Ushaidi

Ushaidi is an Android-based application that helps you to complete surveys

with or without the internet in any location. The problem with this applica-

tion is that the GPS remains on even after the application has been closed

[31].

The source code of the Ushaidi is given in [32] and the apk file can be

downloaded from [33].

7. Zmanim

Zmanim is an Android-based application and tells about Jewish prayer times.

The problem with this application is that the application acquires a GPS

resource and never releases it even after the pause and causes resource leaking

[34].

The source code of the Zmanim is given in [35] and the apk file can be

downloaded from [36].

Results and Discussion 34

8. TTS Reader

TTS Reader is an Android-based application and helps to convert your text

into voice and spoke it out loud.

The problem with this application is that a wakelock id acquired it but not

released [37].

The apk file can be downloaded from [38].

9. Better Wifi on/Off

Better Wi-Fi on/off is an Android-based application and gives you access

to control Wi-Fi state. It uses wakelock and Wi-Fi resources. The problem

with this application is that it does not release the wakelock after acquisition

[39].

The source code of the Better Wi-Fi on/off is given in [40] and the apk file

can be downloaded from [41].

10. Fbreader

Fbreader is an Android-based eBook application. The problem with this

application is that it does not release the wakelock after acquisition [42].

The source code of the Fbreader is given in [43] and the apk file can be

downloaded from [44].

11. Pedometer

Pedometer is an Android-based application and counts the number of steps

you walk in a day. It also counts the number of calories that you burn in

a day. The problem with this application is that it does not release the

wakelock after its acquisition [45].

The source code of the Pedometer is given in [46] and the apk file can be

downloaded from [47].

4.2 Features of the Subject Programs

The features of the subject programs are given in Table 4.1.

Results and Discussion 35

Table 4.1: Features of the Subject Programs

App Name Resource
Used

Lines of Code Event Han-
dler Classes

Aripuca GPS 8093 15

Tachometer GPS 793 12

Droid-AR GPS 18177 6

Osmdroid GPS 8107 10

SP Transport GPS 1766 3

Ushaidi GPS 10621 22

Zmanim GPS 72977 4

TTS Reader Wakelock 4560 10

BetterWifi
on/Off

Wakelock, Wifi 2926 19

Fbreader Wakelock 2702 20

Pedometer Wakelock 783 5

Figure 4.1 represents the graphical representation of lines of code for each subject

program.

Figure 4.1: Lines of Code for each Subject Program

Results and Discussion 36

The above graph shows that the Zmanim application has a greater number of lines

of code than the other subject programs.

Figure 4.2 represents the graphical representation of the number of event-handler

classes for each subject program.

Figure 4.2: Number of event-handler Classes for each Subject Program

The above graph shows that the Ushaidi application has a greater number of

event-handler classes than the other subject programs.

We have discussed two of the above-mentioned subject programs Aripuca and

Tachometer in detail.

The other subject programs are not discussed in detail but their result is mentioned

in the result section.

4.3 Event Flow Graph Generation

The Android applications are used to generate the Event Flow Graphs. The Event

Flow Graph of each Android application represents its Graphical User Interface.

The Event Flow Graph of the Aripuca and Tachometer is shown in Figure 4.3 and

Figure 4.4 respectively.

Results and Discussion 37

Figure 4.3: The Event Flow Graph of Aripuca Application

Figure 4.4: The Event Flow Graph of Tachometer Application

4.4 Test-Paths of the Event Flow Graph

We have generated the test-paths for the Event Flow Graph of both the Android

applications. These test-paths of the Event Flow Graph represent the flow of

event-sequences within the application. We have identified all the edges of the

Event of Graph of both the Android applications.

When we apply the edge-coverage criterion on both graphs to generate test-paths,

we make sure that all these edges are covered by the test-paths that are generated.

Results and Discussion 38

The edges for the Event Flow Graph of Aripuca shown in Figure 4.3 are shown in

Figure 4.5:

Figure 4.5: Edges of the Event Flow Graph for Aripuca Application

The test-paths for the Event Flow Graph of Aripuca are shown in Figure 4.6.

When we applied the edge-coverage criterion on the Event Flow Graph of Aripuca

application, a total of four test-paths are generated.

Figure 4.6: Test-Paths of the Event Flow Graph of Aripuca Application

The edges covered from the test-path 1 are:

E1 → E2, E2→ E3, E2→ E8, E3→ E1, E8→ E12, E12→ E15

The edges covered from the test-path 2 are:

E1 → E3, E1 → E4, E1 → E5, E2 → E1, E3 → E2, E4 → E1, E5 → E1, E5 →

E9, E8→ E11, E9→ E1, E11→ E8, E15→ E12

Results and Discussion 39

The edges covered from the test-path 3 are:

E1 → E6, E1→ E7, E6→ E1, E7→ E1, E8→ E2

The edges covered from the test-path 4 are:

E5 → E10, E10 → E1, E12 → E8, E12 → E3, E12 → E14, E13 → E12, E14 →

E12

Therefore, all the edges of the Event Flow Graph of the Aripuca application are

covered by these test-paths. The edges for the Event Flow Graph of Tachometer

shown in Figure 4.4 are shown in Figure 4.7:

Figure 4.7: Edges of the Event Flow Graph for Tachometer Application

The test-paths for the Event Flow Graph of Tachometer are shown in Figure

4.8. When we applied the edge-coverage criterion on the Event Flow Graph of

Tachometer application, a total of three test-paths are generated.

Figure 4.8: Test-Paths of the Event Flow Graph of Tachometer Application

Results and Discussion 40

The edges covered from the test-path 1 are:

E1 → E2, E2 → E3, E2 → E5, E2 → E6, E3 → E4, E4 → E9, E5 → E2, E6 →

E2, E11→ E12

The edges covered from the test-path 2 are:

E1 → E4, E2→ E1, E4→ E1, E4→ E7, E4→ E8, E7→ E1, E8→ E4

The edges covered from the test-path 3 are:

E3 → E2, E4→ E10, E9→ E4, E10→ E4, E12→ E9

Therefore, all the edges of the Event Flow Graph of the Tachometer application

are covered by these test-paths.

4.5 Complete Test-Paths

With the help of the test-paths generated from the EFG of both the applications,

we have made the complete test-paths. The test-paths of the EFG represent the

event sequence in which they execute within the application.

We have chosen those events from these test-paths whose corresponding event-

handler method has acquired or released a resource within their code. We have

generated the Control Flow Graph of such event-handlers’ methods and associated

them with their corresponding events in the EFG.

After that, we have generated test-paths of the Control Flow Graphs and replaced

those test-paths with their corresponding events that occur in the test-path of the

Event Flow Graph to make a complete test-path.

The Control Flow Graph of the event-handlers’ methods of the Aripuca application

is associated with the Event Flow Graph of the application as shown in Figure 4.9.

As described earlier, these are the event-handlers in which a resource is acquired

or released.

R
esu

lts
an

d
D

iscu
ssion

41

Figure 4.9: Control Flow Graphs Associated with Corresponding Events of the Event Flow Graph of Aripuca Application

Results and Discussion 42

We have generated the test-paths of the Control Flow Graphs mentioned in Figure

4.9.

The test-paths are generated by using the edge-coverage criterion. The test-paths

for the CFG E1 are shown in Figure 4.10.

Figure 4.10: Test-Paths for the CFG E1 of the Aripuca Application

The test-paths containing node 6 are buggy-paths because a resource is acquired

at node 6 and is not released. Therefore, test-path 3 and 4 cause an energy-bug.

The test-paths for the CFG E2 are shown in Figure 4.11.

Figure 4.11: Test-Paths for the CFG E3 of the Aripuca Application

The Control Flow Graph of the event-handlers of the Tachometer application is

associated with the Event Flow Graph of the application as shown in Figure 4.12.

As described earlier, these are the event-handlers in which a resource is acquired

or released.

R
esu

lts
an

d
D

iscu
ssion

43

Figure 4.12: Control Flow Graphs associated with corresponding events of the Event Flow Graph of Tachometer Application

Results and Discussion 44

We have generated the test-paths of the Control Flow Graphs mentioned in Figure

4.12. The test-paths are generated by using the edge-coverage criterion. The test-

paths for the CFG E1 are shown in Figure 4.13.

Figure 4.13: Test-Paths for the CFG E1 of the Tachometer Application

The test-paths containing node 4 are buggy-paths because a resource is acquired

at node 4 and is not released. Therefore test-path 1 and 2 cause an energy-bug.

The test-paths for the CFG E2 are shown in Figure 4.14.

Figure 4.14: Test-Paths for the CFG E2 of the Tachometer Application

We have replaced these-paths that are generated from the Control Flow Graphs of

both the Android applications with their corresponding events that occur in the

test-path of their Event Flow Graphs to make a complete test-path.

4.5.1 Complete Test-Paths of the Aripuca Application

For generating the complete test-path of the Aripuca application shown in Figure

4.9, we have replaced the nodes E1 and E2 in the EFG test-paths of the Aripuca

application with the test-paths of their corresponding Control Flow Graphs.

Results and Discussion 45

4.5.1.1 Test-Paths for Event Flow Graph of Aripuca Application

Test-Path 1: E1→ E2→ E3→ E1→ E2→ E8→ E12→ E15

After replacement, multiple test-paths have been generated against test-path 1 of

EFG that are called complete test-paths.

• 1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8→ E3→ 1, 2, 4, 6, 7, 8, 9→ 1, 2, 3, 4, 5, 6,

7, 8→ E8→ E12→ E15

• 1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8→ E3→ 1, 2, 4, 6, 8, 9→ 1, 2, 3, 4, 5, 6, 7,

8→ E8→ E12→ E15

• 1, 2, 4, 6, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8→ E3→ 1, 2, 4, 6, 8, 9→ 1, 2, 3, 4, 5, 6, 7, 8

→ E8→ E12→ E15

• 1, 2, 4, 6, 8, 9→ 1, 2, 3, 4, 5, 6, 7, 8→ E3→ 1, 2, 4, 6, 7, 8, 9→ 1, 2, 3, 4, 5, 6, 7, 8→

E8→ E12→ E15

Test-Path 2: E1 → E2→ E1→ E4→ E1→ E5→ E1→ E5→ E9→ E1→

E3→ E2→ E8→ E11→ E8→ E12→ E15→ E12→ E15

After replacement, multiple test-paths have generated against test-path 2 of EFG

that are called complete test-paths.

• 1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8→ 1, 2, 4, 6, 8, 9→ E4→ 1, 2, 4, 6, 7, 8, 9→

E5 → 1, 2, 4, 6, 8, 9 → E5 → E9 → 1, 2, 4, 6, 7, 8, 9 → E3 → 1, 2, 3, 4, 5, 6, 7, 8 →

E8→ E11→ E8→ E12→ E15→ E12→ E15

• 1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8→ 1, 2, 4, 6, 7, 8, 9→ E4→ 1, 2, 4, 6, 8, 9→

E5 → 1, 2, 4, 6, 8, 9 → E5 → E9 → 1, 2, 4, 6, 7, 8, 9 → E3 → 1, 2, 3, 4, 5, 6, 7, 8 →

E8→ E11→ E8→ E12→ E15→ E12→ E15

Test-Path 3: E1→ E6→ E1→ E7→ E1→ E2→ E8→ E2→ E8→ E12→

E15

After replacement, multiple test-paths have generated against test-path 3 of EFG

that are called complete test-paths.

• 1, 2, 4, 6, 7, 8, 9→ E6→ 1, 2, 4, 6, 8, 9→ E7→ 1, 2, 4, 6, 7, 8, 9→ 1, 2, 3, 4, 5, 6, 7,

8→ E8→ E12→ E15

Results and Discussion 46

• 1, 2, 4, 6, 8, 9→ E6→ 1, 2, 4, 6, 7, 8, 9→ E7→ 1, 2, 4, 6, 8, 9→ 1, 2, 3, 4, 5, 6, 7, 8

→ E8→ 1, 2, 3, 4, 5, 6, 7, 8→ E8→ E12→ E15

Test-Path 4: E1→ E5 → E10 → E1 → E2 → E8 → E12 → E8 → E12 →

E13→ E12→ E14→ E12→ E15

After replacement, multiple test-paths have generated against test-path 4 of EFG

that are called complete test-paths.

• 1, 2, 4, 6, 7, 8, 9→ E5 → E10 → 1, 2, 4, 6, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8 → E8 →

E12→ E8→ E12→ E13→ E12→ E14→ E12→ E15

• 1, 2, 4, 6, 8, 9→ E5 → E10 → 1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8 → E8 →

E12→ E8→ E12→ E13→ E12→ E14→ E12→ E15

4.5.2 Complete Test-Paths of the Tachometer Application

For generating the complete test-path of the Tachometer application shown in

Figure 4.12.

We have replaced the nodes E1 and E3 in the EFG test-paths of the Aripuca

application with the test-paths of their corresponding Control Flow Graphs.

4.5.2.1 Test-Paths for Event Flow Graph of Tachometer Application

Test-Path 1: E1→ E2→ E5→ E2→ E6→ E2→ E3→ E4→ E9→ E11→

E12

After replacement, multiple test-paths have been generated against test-path 1 of

EFG that are called complete test-paths.

• 1, 2, 3, 4, 5, 6, 9, 10 → E2→ E5→ E2→ E6→ E2→ 1, 2, 3, 4, 5, 7→ E4→

E9→ E11→ E12

• 1, 2, 3, 4, 5, 7, 9, 10 → E2→ E5→ E2→ E6→ E2→ 1, 2, 3, 4, 5, 7→ E4→

E9→ E11→ E12

Results and Discussion 47

Test-Path 2: E1 → E2→ E1→ E4→ E1→ E2→ E3→ E4→ E7→ E1→

E2→ E3→ E4→ E8→ E4→ E9→ E11→ E12

After replacement, multiple test-paths have generated against test-path 2 of EFG

that are called complete test-paths.

• 1, 2, 3, 4, 5, 6, 9, 10 → E2→ 1, 2, 3, 4, 5, 7, 9, 10→ E4→ 1, 2, 3, 4, 5, 6,

9, 10→ E2→ 1, 2, 3, 4, 5, 7→ E4→ E7→ 1, 2, 3, 4, 5, 7, 9, 10→ E2→ 1, 2, 3, 4, 5, 7→

E4→ E8→ E4→ E9→ E11→ E12

• 1, 2, 3, 4, 5, 7, 9, 10 → E2→ 1, 2, 3, 4, 5, 6, 9, 10→ E4→ 1, 2, 3, 4, 5, 7,

9, 10→ E2→ 1, 2, 3, 4, 5, 7→ E4→ E7→ 1, 2, 3, 4, 5, 7, 9, 10→ E2→ 1, 2, 3, 4, 5, 7→

E4→ E8→ E4→ E9→ E11→ E12

Test-Path 3: E1→ E2→ E3→ E2→ E3→ E4→ E10→ E4→ E9→ E4→

E9→ E11→ E12→ E9→ E11→ E12

After replacement, multiple test-paths have generated against test-path 3 of EFG

that are called complete test-paths.

• 1, 2, 3, 4, 5, 6, 9, 10 → E2 → 1, 2, 3, 4, 5, 7 → E2 → 1, 2, 3, 4, 5, 7 → E4 →

E10→ E4→ E9→ E4→ E9→ E11→ E12→ E9→ E11→ E12

• 1, 2, 3, 4, 5, 7, 9, 10 → E2 → 1, 2, 3, 4, 5, 7 → E2 → 1, 2, 3, 4, 5, 7 → E4 →

E10→ E4→ E9→ E4→ E9→ E11→ E12→ E9→ E11→ E12

4.6 Test-Paths Evaluation

In this section, we described those test-inputs that we have generated against the

each complete test-path.

After generating the test-inputs, we have evaluated the complete test-paths both

on CFG and EFG level.

The complete test-paths against one single test-path of the Event Flow Graph of

the Aripuca application. The evaluation of this particular application is shown in

the Table 4.2.

Results and Discussion 48

Table 4.2: Test-Inputs for a Complete Test-Path of the Aripuca EFG

EFG Test-

Path

Complete Test-Paths Output

at

CFG

Level

Output

at

EFG

Level

E1 → E2 →

E3 → E1 →

E2 → E8 →

E12→ E15

1, 2, 4, 6, 7, 8, 9→ 1, 2, 3, 4, 5, 6, 7, 8→ E3→

1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8 → E8 →

E12→ E15

Energy-

Bug

No

Bug

1, 2, 4, 6, 7, 8, 9→ 1, 2, 3, 4, 5, 6, 7, 8→ E3→

1, 2, 4, 6, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8 → E8 →

E12→ E15

Energy-

Bug

No

Bug

1, 2, 4, 6, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8 → E3 →

1, 2, 4, 6, 8,→ 1, 2, 3, 4, 5, 6, 7, 8 → E8 →

E12→ E15

Energy-

Bug

No

Bug

1, 2, 4, 6, 8, 9 → 1, 2, 3, 4, 5, 6, 7,→ E3 →

1, 2, 4, 6, 7, 8, 9 → 1, 2, 3, 4, 5, 6, 7, 8 → E8 →

E12→ E15

Energy-

Bug

No

Bug

It is concluded from Table 4.2 that 4 test-paths were generated for the Event Flow

Graph of the Aripuca application. Four (4) complete test-paths were generated

against test-path 1 of the Event Flow Graph. Two (2) complete test-paths were

generated against each test-path 2, 3, and four (4) of the Event Flow Graph as

shown in Figure 4.15.

The test-paths 1 and 2 of the CFG E1 are buggy paths because a location-update

resource is acquired on node 4 but not released anywhere in this method. However,

after generating complete test-paths, we found that when the event E3 occurs

after the event E1 in the test-path of the Event Flow Graph, the location-update

resource is released and there is no energy-bug is detected and therefore, it makes

the energy-bug detected at the method level a false-positive at the application

Results and Discussion 49

level. The complete test-paths against one single test-path of the Event Flow

Graph of the Tachometer application, and its evaluation are shown in Table 4.3.

Table 4.3: Test-Inputs for a Complete Test-Path of the Tachometer EFG

EFG Test-Path Complete Test-Paths Output

at

CFG

Level

Output

at

EFG

Level

E1→ E2 → E5 →

E2 → E6 → E2 →

E3 → E4 → E9 →

E11→ E12

1,2,3,4,5,6,9,10→ E2 → E5 →

E2 → E6 → E2 →

1, 2, 3, 4, 5, 7 → E4 → E9 →

E11→ E12

Energy-

Bug

False-

Positive

1,2,3,4,5,7,9,10→ E2 → E5 →

E2 → E6 → E2 →

1, 2, 3, 4, 5, 7 → E4 → E9 →

E11→ E12

Energy-

Bug

False-

Positive

It is concluded from Table 4.3 that 3 test-paths were generated for the Event Flow

Graph of the Tachometer application.

2 complete test-paths were generated against each test-path of the Event Flow

Graph as shown in Figure 4.15.

The test-paths 3 and 4 (two test-paths) of the Control Flow Graph E1 are buggy

paths because a location-update resource is acquired on node 4 but not released

anywhere.

However, after generating complete test-paths, we found that when the event E2

occurs after the event E1 in the test-path of the Event Flow Graph, the location-

update resource is released and there is no energy-bug is detected.

Therefore, it makes the energy-bug detected at the method level a false-positive

at the application level.

Results and Discussion 50

4.7 Results

We have chosen 11 real-life Android applications from online sources such as

GitHub and Google Play to perform experiments. These applications that we have

used in our experiments have at least 700 lines-of-code and use energy-intensive

resources.

Our proposed technique reported false-positives for 10 out of 11 applications.

Table 4.4 describes the details include the total EFG test-paths, complete test-

paths, and bug-free paths in each subject program.

Table 4.4: No. of EFG Test-Paths, no. of complete test-paths, and bug-free
paths in each Subject Program

App Name EFG Test-
Paths

Complete
Test-Paths

Bug-Free
Paths

Aripuca 4 10 10

Tachometer 3 6 6

Droid-AR 2 4 4

Osmdroid 6 11 11

SP Transport 2 4 4

Ushaidi 8 14 14

Zmanim 2 4 4

TTS Reader 5 8 8

BetterWifi on/Off 6 10 10

Fbreader 7 12 12

Pedometer 4 8 6

The graphical representation of Table 4.4 is shown in Figure 4.15.

Results and Discussion 51

Figure 4.15: No. of EFG Test-Paths and no. of complete test-paths in each
Subject Program

The above graph represents number of EFG test-paths and number of complete

test-paths generated from each subject program. A greater number of EFG test-

paths and number of false-positives were detected in Ushaidi application. Droid-

AR, SP-Transport and Zmanim generated equal number of EFG test-paths and

number of complete test-paths. Pedometer is the only subject program that con-

tains 2 real energy-bugs. All other subject programs contain no energy-bug. From

the above graph, it is concluded that among these 11 Android applications, 7 have

used GPS (location update) resource, 3 have used wakelock resource and 1 have

used both wakelock and Wifi resource. Zmanim application has more lines-of-code

than other applications and Ushaidi has a greater number of event-handler classes

than other applications. All applications have used at least one energy-intensive

resource.

4.8 Comparison

We have chosen 11 Android applications and compared them with proposed tech-

nique and technique [3]. On inspecting applications for detection of energy-bugs,

we observed that a resource is acquired in an event-handler but not released; that

case makes it an energy-bug at the method level. However, on inspecting further,

Results and Discussion 52

we found that particular resource is released in some other event-handler and that

makes it FPs at application level. The comparison is given in Table 4.5.

Table 4.5: Comparison of Proposed Approach with Existing Approach

App
Name

Energy-Bugs de-
tected by Banerjee
et al. [3]

False-Positives
detected by Pro-
posed Approach

Real Energy Bugs
in each Applica-
tion

Aripuca 2 energy-bugs were
detected

2 false-positives were
detected

No energy bugs

Tachometer 2 energy-bugs were
detected

2 false-positives were
detected

No energy bugs

Droid-AR 1 energy-bugs were
detected

1 false-positives were
detected

No energy bugs

Osmdroid 3 energy-bugs were
detected

3 false-positives were
detected

No energy bugs

SP Trans-
port

1 energy-bugs were
detected

1 false-positives were
detected

No energy bugs

Ushaidi 4 energy-bugs were
detected

4 false-positives were
detected

No energy bugs

Zmanim 1 energy-bugs were
detected

1 false-positives were
detected

No energy bugs

TTS
Reader

7 energy-bugs were
detected

7 false-positives were
detected

No energy bugs

Better
Wifi
on/Off

12 energy-bugs were
detected

12 false-positives
were detected

No energy bugs

Fbreader 14 energy-bugs were
detected

14 false-positives
were detected

No energy bugs

Pedometer 2 energy-bugs were
detected

No false-positives
were detected

2 energy bugs

The above table concludes that Pedometer is the only application that contains 2

Results and Discussion 53

real energy bugs and our proposed approach also detected those energy bugs. On

inspecting the applications for the detection of energy-bugs, we observed that a

resource is acquired in an event-handler but not released; that case makes it an

energy-bug at the method level. However, on inspecting further, we found that the

particular resource is released in some other event-handler and that makes it false-

positive at the application level. It is also concluded that the proposed approach

only detects the real energy bugs that exist in an application and eliminates false

positives whereas the existing approach [3] did not detect the real energy bugs.

Figure 4.16 shows the graphical representation of Table 4.5.

Figure 4.16: Comparison of Proposed Approach with Existing Approach

It is concluded that the energy-bugs detected at the method level by Banerjee et

al [3] are FPs at application level and proposed approach detected those FPs. Pro-

posed approach detected real energy-bugs only in Pedometer application because

it contains real energy-bugs. The existing approach has used symbolic execution

for energy bug detection whereas proposed approach performs actual execution of

code to detect energy bugs. Symbolic execution cannot identify infeasible paths

whereas when code is executed then infeasible paths are excluded as we have gener-

ated paths by using a graph coverage criterion. Therefore, cost for actual execution

may increase but this will also help in detecting energy bugs from large-scale ap-

plications. However, symbolic execution is not useful for large scale applications.

Chapter 5

Conclusion and Future work

In this research, we have proposed a dynamic technique to detect the presence of

energy-bugs in Android applications. We have performed the energy-bug detection

at the application level. The use of Event Flow Graph for each application helps

us to identify the energy-bugs at the application level. The existing techniques

worked on the method level bug detection. They focus on the methods in isolation

and if a resource is acquired in a method and not released, they call it an energy-

bug. However, at the application level if a resource is acquired in one method

and released in another method, such a path may execute in the test-paths of

the Event Flow Graph that execute both the methods and releases that resource

generating no energy-bug at the application level and generates false-positives in

the existing technique. Therefore, energy-bugs detected at the method level may

be false-positives at the application level.

RQ1: What are the gaps in the existing techniques?

From the literature survey, we have identified several techniques that can detect

energy-bugs in an Android application. Some of them use dynamic analysis tech-

niques to detect energy-bugs and some use a hybrid approach. In dynamic analysis

techniques, they use dynamic taint-tracking to detect energy-bugs. Some of the

literature studies monitor the applications during their execution and detect which

resources are left unreleased at the end of the execution. In static analysis tech-

niques, they statically analyze the program code and identify which resources are

54

Conclusion and Future Work 55

left unreleased and causing energy-bug. They measure the power consumption of

the smartphone due to buggy applications by attaching a power-meter with the

device. Hybrid approaches are also statically analyzing the presence of energy-

bugs by analyzing which resources are left unreleased. The existing techniques

work on method level energy-bug detection and consider the methods in isolation.

They do not focus on application level bug detection and generate false-positives.

RQ2: How to enhance the existing techniques for application level

energy-bug detection?

If a resource is acquired in one method and released in another method. When

both of these methods execute in the test-path of an Event Flow Graph than the

resource is released and it does not cause an energy-bug. However, if we consider

both the methods in isolation than this is an energy-bug because the resource is

not released after acquisition. Therefore, the proposed technique enhances the

existing technique by detecting the false-positives in the existing technique.

RQ3: Is the proposed technique better in terms of eliminating false-

positives?

The energy-bugs detected with the existing technique at the method level are not

actual bugs because our proposed approach improves the energy-bug detection

rate by eliminating the false-positives in the existing technique and is better than

the existing technique.

5.1 Future Work

By using our proposed approach, several research directions can be studied in

the future. In particular, there are several other coverage criteria for the graph

coverage such as loop coverage. We plan to apply other coverage criterion on the

Control Flow Graph and the Event Flow Graph. They can generate more test-

paths and can be experimented in the future. Strong coverage criterion means a

greater number of test-paths and this increase the cost. We can make our approach

hybrid in future as this will minimize the cost.

Bibliography

[1] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and

detecting resource leaks in android applications,” in 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE,

2013, pp. 389–398.

[2] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury, “De-

tecting energy bugs and hotspots in mobile apps,” in Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering, 2014, pp. 588–598.

[3] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, “Energy-

patch: Repairing resource leaks to improve energy-efficiency of android apps,”

IEEE Transactions on Software Engineering, vol. 44, no. 5, pp. 470–490, 2017.

[4] Y. Liu, C. Xu, and S.-C. Cheung, “Where has my battery gone? finding

sensor related energy black holes in smartphone applications,” in 2013 IEEE

international conference on pervasive Computing and Communications (Per-

Com). IEEE, 2013, pp. 2–10.

[5] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, “Light-weight,

inter-procedural and callback-aware resource leak detection for android apps,”

IEEE Transactions on Software Engineering, vol. 42, no. 11, pp. 1054–1076,

2016.

[6] H. Wu, S. Yang, and A. Rountev, “Static detection of energy defect patterns

in android applications,” in Proceedings of the 25th International Conference

on Compiler Construction, 2016, pp. 185–195.

56

Bibliography 57

[7] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and L. Yang,

“Adel: An automatic detector of energy leaks for smartphone applications,”

in Proceedings of the eighth IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, 2012, pp. 363–372.

[8] Y. Liu, C. Xu, S.-C. Cheung, and J. Lü, “Greendroid: Automated diagnosis

of energy inefficiency for smartphone applications,” IEEE Transactions on

Software Engineering, vol. 40, no. 9, pp. 911–940, 2014.

[9] A. M. Abbasi, M. Al-tekreeti, Y. Ali, K. Naik, A. Nayak, N. Goel, and

B. Plourde, “A framework for detecting energy bugs in smartphones,” in 2015

6th International Conference on the Network of the Future (NOF). IEEE,

2015, pp. 1–3.

[10] J. Wang, Y. Liu, C. Xu, X. Ma, and J. Lu, “E-greendroid: effective energy

inefficiency analysis for android applications,” in Proceedings of the 8th Asia-

Pacific Symposium on Internetware, 2016, pp. 71–80.

[11] Q. Li, C. Xu, Y. Liu, C. Cao, X. Ma, and J. Lü, “Cyandroid: stable and

effective energy inefficiency diagnosis for android apps,” Science China Infor-

mation Sciences, vol. 60, no. 1, p. 012104, 2017.

[12] Y. Liu, J. Wang, C. Xu, and X. Ma, “Navydroid: detecting energy inefficiency

problems for smartphone applications,” in Proceedings of the 9th Asia-Pacific

Symposium on Internetware, 2017, pp. 1–10.

[13] A. M. Abbasi, M. Al-Tekreeti, K. Naik, A. Nayak, P. Srivastava, and M. Za-

man, “Characterization and detection of tail energy bugs in smartphones,”

IEEE Access, vol. 6, pp. 65 098–65 108, 2018.

[14] Arif. M-Memon, “An event-flow model of GUI-based applications for testing,”

Software testing, verification and reliability, vol. 17, pp. 3 137–157 108, 2007.

[15] A. Developers, UI/Application Exerciser Monkey, 2013 (accessed August

25, 2020). [Online]. Available: https://developer.android.com/studio/test/

monkey

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey

Bibliography 58

[16] M. Danilo-Bruschi, “Detecting Self-Mutating Malware Using Control Flow

Graph Matching,” URl: Citeseerx.ist.psu.edu, Springer, vol. 17, pp. 3 129–

143 108, 2006.

[17] VitalNik, Aripuca GPS Tracker, (accessed September 04, 2020).

[Online]. Available: https://play.google.com/store/apps/details?id=com.

aripuca.tracker&hl=en

[18] Vitanik, Github:desword/aripuca-tracker, (accessed September 04, 2020).

[Online]. Available: https://github.com/desword/aripuca-tracker

[19] vitaNik, Apkfun:Aripuca GPS Trackerr, (accessed September 04, 2020).

[Online]. Available: https://apkpure.com/aripuca-gps-tracker/com.aripuca.

tracker

[20] Androcalc, Tachometer, (accessed September 04, 2020). [Online].

Available: https://play.google.com/store/apps/details?id=com.diogines.

tachometer&hl=en

[21] androcalc, Github: Polymer/tachometer, (accessed September 04, 2020).

[Online]. Available: https://github.com/Polymer/tachometer

[22] aandrocalc, Apkpure: tachometer, (accessed September 04, 2020). [Online].

Available: https://apkpure.com/tachometer/com.diogines.tachometer

[23] Droider, Google Play Store:droidar - default, (accessed September 04,

2020). [Online]. Available: https://code.google.com/archive/p/droidar/

source/default/source

[24] L. O. T. A. Variety, Download DroidAR (Car Finder) APK, (accessed

September, 2020). [Online]. Available: https://apk.fun/de.rwth.html

[25] N. Boyd, osmdroid, (accessed September, 2020). [Online]. Available:

https://play.google.com/store/apps/details?id=org.osmdroid&hl=en

[26] G. N. Boyd, osmdroid/osmdroid, (accessed September, 2020). [Online].

Available: https://github.com/osmdroid/osmdroid

https://play.google.com/store/apps/details?id=com.aripuca.tracker&hl=en
https://play.google.com/store/apps/details?id=com.aripuca.tracker&hl=en
https://github.com/desword/aripuca-tracker
https://apkpure.com/aripuca-gps-tracker/com.aripuca.tracker
https://apkpure.com/aripuca-gps-tracker/com.aripuca.tracker
https://play.google.com/store/apps/details?id=com.diogines.tachometer&hl=en
https://play.google.com/store/apps/details?id=com.diogines.tachometer&hl=en
https://github.com/Polymer/tachometer
https://apkpure.com/tachometer/com.diogines.tachometer
https://code.google.com/archive/p/droidar/source/default/source
https://code.google.com/archive/p/droidar/source/default/source
https://apk.fun/de.rwth.html
https://play.google.com/store/apps/details?id=org.osmdroid&hl=en
https://github.com/osmdroid/osmdroid

Bibliography 59

[27] N. boyd, Osmdroid, (accessed September 04, 2020). [Online]. Available:

https://apkpure.com/osmdroid/org.osmdroid

[28] T. Halvadzhiev, Google Play Store: Sofia Public Transport, (accessed

September, 2020). [Online]. Available: https://play.google.com/store/apps/

details?id=com.bearenterprises.sofiatraffic&hl=en

[29] T. halvadzhiev, Github:SourceCodeBackup/sofia-public-transport-navigator,

(accessed September 04, 2020). [Online]. Available: https://github.com/

SourceCodeBackup/sofia-public-transport-navigator

[30] teodor halvadzhiev, Apkpure: Sofia Public Transport, (accessed September,

2020). [Online]. Available: https://apkpure.com/sofia-public-transport/com.

bearenterprises.sofiatraffic

[31] U. Inc., Google Paly Store: Ushahidi, (accessed September, 2020).

[Online]. Available: https://play.google.com/store/apps/details?id=com.

ushahidi.mobile&hl=en AU

[32] ushahidi Inc., Github: Ushahidi, (accessed September, 2020). [Online].

Available: https://github.com/ushahidi/Ushahidi

[33] U. Inc., apkpure: Ushahidi Classic, (accessed September 04, 2020). [Online].

Available: https://apkpure.com/ushahidi-classic/com.ushahidi.android.app

[34] J. Gindin, Google Play Store: Zmanim, (accessed September, 2020).

[Online]. Available: https://play.google.com/store/apps/details?id=com.

gindin.zmanim.android&hl=en

[35] jay Gindin, Github: KosherJava/zmanim, (accessed September 04, 2020).

[Online]. Available: https://github.com/KosherJava/zmanim

[36] jay gindin, Apkpure: zmanim, (accessed September 04, 2020). [Online].

Available: https://apkpure.com/zmanim/com.gindin.zmanim.android

[37] D. Nachmani, Google play store:TTS Reader, (accessed September, 2020).

[Online]. Available: https://play.google.com/store/apps/details?id=com.

davidnac.ttsreaderfree&hl=en

https://apkpure.com/osmdroid/org.osmdroid
https://play.google.com/store/apps/details?id=com.bearenterprises.sofiatraffic&hl=en
https://play.google.com/store/apps/details?id=com.bearenterprises.sofiatraffic&hl=en
https://github.com/SourceCodeBackup/sofia-public-transport-navigator
https://github.com/SourceCodeBackup/sofia-public-transport-navigator
https://apkpure.com/sofia-public-transport/com.bearenterprises.sofiatraffic
https://apkpure.com/sofia-public-transport/com.bearenterprises.sofiatraffic
https://play.google.com/store/apps/details?id=com.ushahidi.mobile&hl=en_AU
https://play.google.com/store/apps/details?id=com.ushahidi.mobile&hl=en_AU
https://github.com/ushahidi/Ushahidi
https://apkpure.com/ushahidi-classic/com.ushahidi.android.app
https://play.google.com/store/apps/details?id=com.gindin.zmanim.android&hl=en
https://play.google.com/store/apps/details?id=com.gindin.zmanim.android&hl=en
https://github.com/KosherJava/zmanim
https://apkpure.com/zmanim/com.gindin.zmanim.android
https://play.google.com/store/apps/details?id=com.davidnac.ttsreaderfree&hl=en
https://play.google.com/store/apps/details?id=com.davidnac.ttsreaderfree&hl=en

Bibliography 60

[38] Libera, apkpure:TTS Reader reads aloud books, all books, (accessed September

04, 2020). [Online]. Available: https://play.google.com/store/apps/details?

id=com.davidnac.ttsreaderfree&hl=en

[39] S. Knispel, Google Play Store: Better Wifi On/Off, (accessed September 04,

2020). [Online]. Available: https://play.google.com/store/apps/details?id=

com.asksven.betterwifionoff&hl=en

[40] Asksven, Github: asksven/BetterWifiOnOffl, (accessed September 04, 2020).

[Online]. Available: https://github.com/asksven/BetterWifiOnOff?files=1

[41] S. KnispeL, apkpure:Better Wifi On/Off, (accessed September 04, 2020).

[Online]. Available: https://apkpure.com/better-wifi-on-off/com.asksven.

betterwifionoff

[42] F. LimitedL, Google Play Store: FBReader: Favorite Book Reader, (accessed

September, 2020). [Online]. Available: https://play.google.com/store/apps/

details?id=org.geometerplus.zlibrary.ui.android&hl=en

[43] N. Pelstin, geometer/FBReader-Android-2r, (accessed September 04, 2020).

[Online]. Available: https://github.com/geometer/FBReader-Android-2/

tree/master/fbreader/app/src/main/java/org/geometerplus/fbreader/

fbreader

[44] F. Limited, Apkpure: FBReader Favorite Book Reader, (accessed

September 04, 2020). [Online]. Available: https://apkpure.com/

fbreader-favorite-book-reader/org.geometerplus.zlibrary.ui.android

[45] I. ITO Technologies, Google Play Store:Pedometer - Step Counter, (accessed

September, 2020). [Online]. Available: https://play.google.com/store/apps/

details?id=com.tayu.tau.pedometer&hl=en

[46] j4velin, Github: j4velin/Pedometer, (accessed September 04, 2020). [Online].

Available: https://github.com/j4velin/Pedometer

https://play.google.com/store/apps/details?id=com.davidnac.ttsreaderfree&hl=en
https://play.google.com/store/apps/details?id=com.davidnac.ttsreaderfree&hl=en
https://play.google.com/store/apps/details?id=com.asksven.betterwifionoff&hl=en
https://play.google.com/store/apps/details?id=com.asksven.betterwifionoff&hl=en
https://github.com/asksven/BetterWifiOnOff?files=1
https://apkpure.com/better-wifi-on-off/com.asksven.betterwifionoff
https://apkpure.com/better-wifi-on-off/com.asksven.betterwifionoff
https://play.google.com/store/apps/details?id=org.geometerplus.zlibrary.ui.android&hl=en
https://play.google.com/store/apps/details?id=org.geometerplus.zlibrary.ui.android&hl=en
https://github.com/geometer/FBReader-Android-2/tree/master/fbreader/app/src/main/java/org/geometerplus/fbreader/fbreader
https://github.com/geometer/FBReader-Android-2/tree/master/fbreader/app/src/main/java/org/geometerplus/fbreader/fbreader
https://github.com/geometer/FBReader-Android-2/tree/master/fbreader/app/src/main/java/org/geometerplus/fbreader/fbreader
https://apkpure.com/fbreader-favorite-book-reader/org.geometerplus.zlibrary.ui.android
https://apkpure.com/fbreader-favorite-book-reader/org.geometerplus.zlibrary.ui.android
https://play.google.com/store/apps/details?id=com.tayu.tau.pedometer&hl=en
https://play.google.com/store/apps/details?id=com.tayu.tau.pedometer&hl=en
https://github.com/j4velin/Pedometer

Bibliography 61

[47] I. ITO TechnologieS, Apkpure:Pedometer Step Counter 5.33 for Android,

(accessed September 04, 2020). [Online]. Available: https://apkpure.com/

pedometer-step-counter/com.tayu.tau.pedometer

[48] X. Li, Y. Yang, Y. Liu, J. P. Gallagher, and K. Wu, “Detecting and diagnos-

ing energy issues for mobile applications,” in Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing and Analysis, 2020,

pp. 115–127.

https://apkpure.com/pedometer-step-counter/com.tayu.tau.pedometer
https://apkpure.com/pedometer-step-counter/com.tayu.tau.pedometer

Appendix: The XML Code of the

Subject Programs

• XML Code for the Control Flow Graph of the Event E2:

<graph version=”1.0” encoding=”UTF-8”

<GraphXML>

<graph version=”1.0” vendor=”www.drgarbage.com”

id=”FindMe”>

<node name=”2”>

<label>41</label>

</node>

<node name=”3”>

<label>42</label>

</node>

<node name=”4”>

<label>43</label>

</node>

62

Appendix 63

<node name=”5”>

<label>44</label>

</node>

<node name=”6”>

<label>45</label>

</node>

<node name=”7”>

<label>46</label>

</node>

<node name=”8”>

<label>47</label>

</node>

<node name=”9”>

<label>48</label>

</node>

<node name=”10”>

<label>49</label>

</node>

<node name=”1”>

<label>START</label>

Appendix 64

</node>

<node name=”11”>

<label>EXIT</label>

</node>

<edge source=”1” target=”2”>

<label/>

</edge>

<edge source=”2” target=”3”>

<label/>

</edge>

<edge source=”3” target=”4”>

<label/>

</edge>

<edge source=”4” target=”5”>

<label/>

</edge>

<edge source=”5” target=”6”>

<label/>

</edge>

<edge source=”6” target=”7”>

Appendix 65

<label/>

</edge>

<edge source=”7” target=”8”>

<label/>

</edge>

<edge source=”7” target=”9”>

<label/>

</edge>

<edge source=”2” target=”10”>

<label/>

</edge>

<edge source=”4” target=”10”>

<label/>

</edge>

<edge source=”8” target=”10”>

<label/>

</edge>

<edge source=”9” target=”10”>

<label/>

</edge>

Appendix 66

<edge source=”10” target=”11”>

<label/>

</edge>

<label/>

</edge>

</graph>

</GraphXML>

• XML Code for the Control Flow Graph of the Event E5:

<graph version=”1.0” encoding=”UTF-8”

<GraphXML>

<graph version=”1.0” vendor=”www.drgarbage.com”

id=”FindMyLocation”>

<node name=”2”>

<label>75</label>

</node>

<node name=”3”>

<label>76</label>

</node>

<node name=”4”>

<label>77</label>

</node>

Appendix 67

<node name=”5”>

<label>78</label>

</node>

<node name=”6”>

<label>79</label>

</node>

<node name=”7”>

<label>80</label>

</node>

<node name=”8”>

<label>81</label>

</node>

<node name=”9”>

<label>82</label>

</node>

<node name=”10”>

<label>83</label>

</node>

<node name=”11”>

<label>START</label>

Appendix 68

</node>

<node name=”12”>

<label>EXIT</label>

</node>

<edge source=”11” target=”2”>

<label/>

</edge>

<edge source=”2” target=”3”>

<label/>

</edge>

<edge source=”3” target=”4”>

<label/>

</edge>

<edge source=”4” target=”5”>

<label/>

</edge>

<edge source=”5” target=”6”>

<label/>

</edge>

<edge source=”5” target=”7”>

Appendix 69

<label/>

</edge>

<edge source=”6” target=”7”>

<label/>

</edge>

<edge source=”7” target=”8”>

<label/>

</edge>

<edge source=”8” target=”9”>

<label/>

</edge>

<edge source=”3” target=”10”>

<label/>

</edge>

<edge source=”7” target=”10”>

<label/>

</edge>

<edge source=”9” target=”12”>

<label/>

</edge>

Appendix 70

<edge source=”10” target=”12”>

<label/>

</edge>

<label/>

</edge>

</graph>

</GraphXML>

• XML Code for the Control Flow Graph of the Event E6:

<graph version=”1.0” encoding=”UTF-8”

<GraphXML>

<graph version=”1.0” vendor=”www.drgarbage.com”

id=”SendLocationBySMS”>

<node name=”2”>

<label>65</label>

</node>

<node name=”3”>

<label>66</label>

</node>

<node name=”4”>

<label>67</label>

</node>

Appendix 71

<node name=”5”>

<label>68</label>

</node>

<node name=”6”>

<label>69</label>

</node>

<node name=”7”>

<label>70</label>

</node>

<node name=”8”>

<label>71</label>

</node>

<node name=”9”>

<label>72</label>

</node>

<node name=”10”>

<label>START</label>

</node>

<node name=”11”>

<label>EXIT</label>

Appendix 72

</node>

<edge source=”2” target=”3”>

<label/>

</edge>

<edge source=”3” target=”4”>

<label/>

</edge>

<edge source=”4” target=”5”>

<label/>

</edge>

<edge source=”5” target=”6”>

<label/>

</edge>

<edge source=”6” target=”7”>

<label/>

</edge>

<edge source=”7” target=”8”>

<label/>

</edge>

<edge source=”8” target=”9”>

Appendix 73

<label/>

</edge>

<edge source=”9” target=”11”>

<label/>

</edge>

<label/>

</edge>

</graph>

</GraphXML>

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Classification of Energy-Bugs
	1.2 Resource Acquisition in Android Applications
	1.3 Energy-Bug Detection Techniques
	1.3.1 Static Analysis Techniques
	1.3.2 Dynamic Analysis Techniques
	1.3.3 Hybrid Analysis Techniques

	1.4 Problem Statement
	1.5 Research Questions
	1.6 Research Methodology
	1.7 Research Contribution
	1.8 Thesis Structure

	2 Literature Review
	2.1 Static Approach
	2.2 Dynamic Approach
	2.3 Hybrid Approach
	2.4 Literature Studies
	2.5 Analysis and Comparison

	3 Proposed Approach
	3.1 Proposed Solution
	3.1.1 Event Flow Graph Generation
	3.1.2 Test-Path Generation for the Event Flow Graph
	3.1.3 Complete Test-Path Generation
	3.1.4 Execution Results/ Detected Bugs

	4 Results and Discussion
	4.1 Subject Programs
	4.2 Features of the Subject Programs
	4.3 Event Flow Graph Generation
	4.4 Test-Paths of the Event Flow Graph
	4.5 Complete Test-Paths
	4.5.1 Complete Test-Paths of the Aripuca Application
	4.5.1.1 Test-Paths for Event Flow Graph of Aripuca Application

	4.5.2 Complete Test-Paths of the Tachometer Application
	4.5.2.1 Test-Paths for Event Flow Graph of Tachometer Application

	4.6 Test-Paths Evaluation
	4.7 Results
	4.8 Comparison

	5 Conclusion and Future work
	5.1 Future Work

	Bibliography
	Appendix: The XML Code of the Subject Programs

